
1

Practical Efficient Deployment and Updating for
Microservice with Dependencies in

Multi-Access Edge Computing
Shuaibing Lu, Member, IEEE, Ran Yan, Jie Wu, Fellow , IEEE, Zhi Cai, Jackson Yang, Shuyang Zhou,

Haiming Liu, and Juan Fang, Member, IEEE

Abstract—As mobile edge computing technology advances rapidly, latency-sensitive and resource-intensive applications are being
offloaded to edge servers to enhance Quality of Service (QoS) for users. Traditional monolithic architectures, however, struggle to
meet the escalating service and traffic requirements of distributed users due to their inherent inflexibility. In response to these
challenges, microservices architecture, characterized by scalability and flexibility, has been adopted for dynamic deployment at the
network edge. However, the deployment of these lightweight, dependency-rich components in a way that minimally impacts the
makespan and maximizes quality of service is complex. Current studies often overlook the deployment of microservices with specific
dependencies within constrained environments of edge server clusters and communication links. This paper introduces practical and
effective strategies for the deployment and updating of microservices, tailored to various application contexts. Initially, two scenarios
are analyzed: one constrained by bandwidth with unlimited storage, and the other by storage with unlimited bandwidth. For each
scenario, optimal solutions are developed using a novel enhanced graph construction method. The study progresses to a more
intricate scenario involving comprehensive constraints on storage, computation, and communication resources. An optimized
deployment method is proposed, utilizing main path embedding followed by an innovative simulated annealing algorithm for iterative
refinement. This method is validated by demonstrating that the main path coincides with the critical path. Furthermore, the dynamic
reallocation of edge resources is explored through a critical path-based updating algorithm that optimizes microservice locations to
reduce overall makespan. Extensive experiments demonstrate that our strategies outperform existing representative benchmark
approaches in terms of overall performance and microservice deployment efficiency.

Index Terms—microservice deployment, updating, dependency, high-efficiency, multi-access edge computing.

✦

1 INTRODUCTION

W ITH the widespread adoption of mobile devices and
the continuous emergence of mobile applications,

traditional cloud computing faces a range of challenges,
such as high latency, network congestion, and extensive
data transmission [1]. Multi-access edge computing, as a
flexible and scalable computing platform, pushes compu-
tation and data processing to the network edge, closer to
users and devices [2]. This effectively reduces the distance
of data transmission on the network, significantly reducing
latency and improving responsiveness. The limitations of
traditional monolithic applications in terms of scalability
and flexibility led to the emergence of microservice ar-
chitecture, a lightweight and highly flexible architectural
pattern [3]. By decomposing complex monolithic appli-
cations into small, autonomous service units, modularity,
scalability, and maintainability are improved. This architec-
ture is widely employed in constructing distributed sys-
tems and cloud-native applications. Containerization tech-
nology encapsulates microservices and their dependencies

• Shuaibing Lu and Ran Yan are with the College of Computer Science,
Beijing University of Technology, Beijing, China, 100124.
E-mail: lushuaibing@bjut.edu.cn.

• Jie Wu is with the China Telecom Cloud Computing Research Institute,
Beijing, 100088, China, and with the Department of Computer and
Information Sciences, Temple University, 1925 N. 12th St., Philadelphia,
PA 19122, USA.
E-mail: jiewu@temple.edu.

• Haiming Liu is with the School of Software Engineering, Beijing Jiaotong
University, Beijing, China, 100091.
E-mail: liuhaiming@bjtu.edu.cn.

cloud

BS

v1 v2

v3

v4

v6

m3

m1 m2 m3

m4 m5
33

3 3 33 3 3

133

3 3 3

1

2

release

v5

m4
2

case A

m1
4

m1
4

m2
4

m2
4

m4
4m4
4 m5

4m5
4m3

4m3
4

m1
4

m2
4

m4
4 m5

4m3
4

case A

m1
4

m2
4

m4
4 m5

4m3
4

4

2

2

1m3

m4

m5

s4

4
4

4

4 2s1

m1 m2
1 1

m3
1

services

m1
4m1
4

m2
4m2
4

2 1 2

1

1

2

2
2

4

2

2

1

m3

m4

m5

s3 m1

m2

3 3

3

33

2
2 1

12

2
4

2 2

1
s2

m1
m3

m2

m4
2 2

2

2

2
1

1 4

2

2

1m3

m4

m5

s4

4
4

4

4 2s1

m1 m2
1 1

m3
1

services

m1
4

m2
4

2 1 2

1

1

2

2
2

4

2

2

1

m3

m4

m5

s3 m1

m2

3 3

3

33

2
2 1

12

2
4

2 2

1
s2

m1
m3

m2

m4
2 2

2

2

2
1

1

m1

case C

m1 m2
1 1

case C

m1 m2
1 1

case B

m3 m2
2 2m3 m2
2 2

case B

m3 m2
2 2

cloud

BS

v1 v2

v3

v4

v6

m3

m1 m2 m3

m4 m5
33

3 3 3

1

2

release

v5

m4
2

case A

m1
4

m2
4

m4
4 m5

4m3
4

4

2

2

1m3

m4

m5

s4

4
4

4

4 2s1

m1 m2
1 1

m3
1

services

m1
4

m2
4

2 1 2

1

1

2

2
2

4

2

2

1

m3

m4

m5

s3 m1

m2

3 3

3

33

2
2 1

12

2
4

2 2

1
s2

m1
m3

m2

m4
2 2

2

2

2
1

1

m1

case C

m1 m2
1 1

case B

m3 m2
2 2

Fig. 1. An illustrating example. v1 to v6 denote edge servers, and S1 to
S4 represent services composed of multiple dependent microservices.
The numbers inside nodes indicate processing requirements, and the
numbers on arrows denote data-flow sizes.

within lightweight, isolated containers [4], which enables
decentralized deployment of services, allowing users to
access the services they need without relying on traditional
centralized cloud infrastructure. By leveraging container
orchestration platforms such as Docker and Kubernetes,
deploying microservices on edge servers is feasible.

Nonetheless, the effective deployment of microservices
across extensive, distributed environments—including

2

both cloud frameworks and edge devices—continues to
pose significant challenges. The inherent complexity of
managing interdependent microservices intensifies these
challenges, demanding nuanced solutions. Central to this
discourse are three pivotal concerns:(i) How can complex
dependencies between microservices be effectively dealt
with to improve overall efficiency? (ii) How to balance
the trade-off between processing and transmission time for
optimal deployment without overwhelming resource con-
straints? (iii) How to update the locations of microservices
to reduce the overall makespan? Addressing these issues
necessitates sophisticated strategies for managing depen-
dencies, optimizing deployment tactics, and maintaining
the system’s overall performance and stability. This paper
focuses on developing optimized deployment strategies for
microservices, particularly those with complex dependen-
cies, within multi-access edge computing environments,
aiming to reduce the overall makespan across varied sce-
narios.

1.1 Motivation and challenge

In a complex and real-time critical autonomous driving sys-
tem, several key services work together, such as sensor data
processing, path planning, vehicle control, and perception
of the environment. These services are divided into several
microservices, each of which focuses on specific functions
and has complex dependencies. For example, the sensor
data processing service collects, caches, and processes data
from sensors such as cameras, radars, and LiDAR. The
environment perception service integrates and analyzes
sensor data to identify and track objects in the environment,
e.g., vehicles, pedestrians, and obstacles. The path planning
service dynamically calculates the optimal route for the cur-
rent situation. The vehicle control service generates control
commands in real time and controls steering, acceleration,
and braking. We use the following example to illustrate
these challenges.

We assume four representative services, denoted as S1,
S2, S3, and S4. Each service consists of multiple microser-
vices with dependencies, and the resulting workflow can
be modeled as a directed acyclic graph. Figure 1 provides
an illustrative example to demonstrate the challenges of
microservice deployment and updating under such depen-
dency constraints. We use vk denotes the k-th edge server
with computing capability c(vk), and mh

i represents the
i-th microservice of service Sh, where the numeric label
inside the node indicates its required processing capacity
qmh

i
. The directed arrows indicate dependency relation-

ships between microservices, and the numeric labels on
these arrows indicate the size of the corresponding data
flows rmh

i →mh
j

. (i) Finding an effective combination that
can reduce the makespan is non-trivial since merging or
splitting dependent microservices introduces complexity.
Taking S3 as an example, one extreme solution is to de-
ploy all the microservices in S3 on v2. This strategy is
shown as case A, which will bring no transfer time of S3.
However, the edge servers are heterogeneous with different
storage and computing capabilities, which might result in
an extremely high computation time when the computing
capacity is very poor. Another extreme solution is to deploy
the microservices separately on edge servers with weak
storage but powerful computing capacities, such as v1, v4,

and v5, as shown in case B. This strategy would increase
the communication time and have a negative impact on
the makespan. Therefore, it is essential to consider the
connections between microservices, which can be either
merged or split within the service. (ii) Since the distance
and communication bandwidth between every pair of edge
servers are different, determining which path to transmit
data generated by the combination of microservices is non-
trivial. Taking case C as an example, we choose to deploy
the microservices in S1 on servers v2 and v3 with the path
that has the largest communication capacity. However, the
computing capacities of v2 and v3 are lower than those of
other servers, which in turn increases the makespan. We
are faced with the trade-off of whether to prioritize servers
with shorter distances but higher connection bandwidth
to reduce communication time, or to place microservices
on servers with higher computing power to improve per-
formance. Therefore, the problem of how to achieve an
efficient microservice deployment by jointly considering
the computing and bandwidth capacities under the storage
constraint is a challenge. (iii) Due to the dynamic release of
services, finding an updating strategy that can reduce the
makespan is non-trivial. Take S4 as an example, when S4

has completed its task and requests the release of resources,
server v6 transitions to an idle state. We assume that the
completion time of S2 is the longest in the system. One
updating strategy is to migrate all services of S2 to v6 to
reduce communication time. However, when v6 computing
capacity is very poor, this strategy may result in extremely
high computation time, thus increasing the makespan. An-
other updating strategy is to migrate some services from S2

to v6, but due to the dependencies among microservices,
selecting a combination to migrate introduces complexity
to the updating problem. For instance, migrating m1

2 and
m3

2 to v6 would involve three communication instances,
increasing communication time. Another updating strategy
is to refrain from migration or migrate services with lower
completion times. However, such updating strategies may
not necessarily reduce the makespan and, in certain situa-
tions, could potentially increase the makespan. Therefore,
determining how to merge or migrate microservices to
decrease makespan also poses a significant challenge.

1.2 Contributions and paper organization

To address the aforementioned challenges, we investigate
the efficient deployment of interdependent microservices
with the goal of minimizing the makespan while improving
system performance and resource utilization. The main
idea of our approach is to formulate the microservice place-
ment problem within a unified optimization framework
that explicitly incorporates dependency-aware resource al-
location and enables efficient, high-quality deployment de-
cisions. The major contributions of this paper are summa-
rized as follows:

• The microservice deployment problem with de-
pendencies is examined, aiming to minimize the
makespan of multiple services under storage, com-
puting, and communication constraints in multi-
access edge computing. The complexity of this prob-
lem is theoretically demonstrated by proving it to be
NP-hard

3

• Four strategies for deploying microservices are pro-
posed, providing flexibility and adaptability for dif-
ferent application scenarios. Initially, two straight-
forward scenarios are considered: one with unlim-
ited storage resources under the bandwidth con-
straint, and the other with unlimited bandwidth
resources under the storage constraint. A novel en-
hanced graph construction method is introduced,
and two optimal solutions are designed for each of
these scenarios.

• Resource constraints on storage, computing, and
communication necessitate a tailored approach to
microservice deployment. Accordingly, this study
introduces a feasible solution through an effective
embedding method that leverages novel definitions
of the main path and the preferred server. These def-
initions are derived from the topology features of the
services and the edge environment. Furthermore,
the study proposes an updated deployment method
using an enhanced simulated annealing strategy.
The complexity of this scenario is rigorously ana-
lyzed to validate the proposed approach.

• The discussion extends to a more complex and
realistic scenario in which all services deployed
on edge servers dynamically release resources after
completing their tasks. An update algorithm, based
on the critical path, adjusts the locations of existing
microservices to ensure rapid response to service
requests and to minimize the overall makespan.

• Extensive experiments were conducted to evaluate
the performance of our strategies against several
benchmarks using the dataset from China Telecom
Shanghai Company, which includes the geographic
information of 3,233 base stations. The results indi-
cate that the proposed methods not only enhance
performance but also reduce time complexity across
various scenarios.

The remainder of this paper is organized as follows. Section
2 surveys related work. Section 3 introduces the models and
presents the problem. Section 4 explores four distinct de-
pendent microservice deployment and updating strategies
for different scenarios. Section 5 presents the experimental
results. Finally, Section 6 provides a summary of the entire
paper.

2 RELATED WORK

Multi-access edge computing has recently emerged as a sig-
nificant research domain, with microservices architecture
being extensively utilized in distributed and cloud-native
systems. Research primarily focuses on the deployment and
dynamic updating of microservices.

2.1 Microservice deployment
In mobile edge computing, improper deployment of mi-
croservices can lead to increased transmission delays and
server overloads. Innovative solutions include Ding et al.
[5], who improved the genetic algorithm for microservice
placement, and Tang et al. [6], who minimized the resource
consumption cost through adaptive deployment optimiza-
tion. Wang et al. [7] and Samanta et al. [8] reducing the
overall latency. Samanta et al. [8] proposed algorithms to

reduce latency and maximize resource utilization, respec-
tively. Moreover, studies like those by Gu et al. [9], [11]
and Kumar et al. [12] have enhanced throughput and op-
timized resource allocation using heuristic and algorithmic
approaches.

Significant efforts also address the deployment com-
plexities of interdependent microservices. For example,
Zhao et al. [13] and Niu et al. [14] focused on optimizing
deployment configurations and minimizing response times
through various algorithmic strategies. Guerrero et al. [15]
and Pallewatta et al. [16], [17], [18] employed optimization
techniques to enhance microservice efficiency and reduce
makespan. Other notable contributions by Liao et al. [19],
Wang et al. [23], [24], and Qi et al. [25] have prioritized task
allocation, context extraction, and collaborative delivery
strategies to improve edge computing performance.

2.2 Microservice updating

Dynamic updating of microservices in edge computing
environments has been addressed by several researchers.
Li et al. [26] optimized network overhead using a heuristic
graph mapping algorithm, while Singh et al. [27] focused
on minimizing downtime during microservice updates.
Zambianco et al. [28] and Sampaio et al. [29] proposed
dynamic re-orchestration and runtime adaptation mech-
anisms to migrate and reconfigure microservices based
on resource utilization. Hossen et al. [30] introduced a
feedback-based auto-scaling method that adjusts resource
allocation dynamically. While existing works provide foun-
dational insights, many overlook the impacts of server het-
erogeneity and the dynamic dependencies of microservices
on resource allocation. Our work extends these discussions
by focusing on real-time resource updates to optimize
service delivery and resource utilization in edge computing
scenarios.

3 PROBLEM FORMULATION

3.1 System model

This paper considers a three-layer network architecture as
depicted in Figure 1, comprising the cloud data center, edge
servers, and end users. Given a substrate topology of an
edge network which is modeled as a weighted undirected
graph G(V,L), where V = {vk} and L = {l(vk,vq)} repre-
sent the sets of edge servers and links, respectively. Here,
we use vk to denote the k-th edge server, and l(vk,vq) rep-
resents the communication link between servers vk and vq .
The computing capability of edge server vk is represented
as c(vk), measured in gflop/s, and the communication
capacity of l(vk,vq) is denoted by b(vk,q), measured in GB/s.
This paper combines Docker container technology with a
microservices architecture to achieve decentralized service
deployment. We encapsulate each microservice within a
container, allowing users to access the required services
without relying on traditional centralized cloud infrastruc-
ture. Therefore, we quantify the capacity of each server in
terms of slots. Each edge server has a storage capacity,
denoted by ϕ(vk), representing the maximum number of
microservices it can accommodate. In addition, we assume
that the services required by the users have been originally
provisioned in the cloud data center [20], which is repre-
sented by set S = {Sh}. Here, we use Sh to denote the h-th

4

service that consists of a set of microservices Mh = {mh
i }

and directed links Eh = {ehmi→mj
}, i.e., Sh = {Mh, Eh}.

Let mh
i represent the i-th microservice of Sh. The required

processing capability of mh
i is denoted as qmh

i
, measured in

gflops. Let ehmi→mj
represent the dependency between mh

i

and mh
j . We use rhmi→mj

to denote the corresponding data
flow size between microservices mh

i and mh
j , representing

the weight of directed edge ehmi→mj
, measured in GB. The

symbols used in this paper are summarized in Table 1.

3.2 Computation and Communication Models

In our work, the completion time of a service includes
both the processing time of the microservices and the time
required for data flow communication. We use dc(m

h
i) to

represent the processing time of microservice mh
i on an

edge server, which is formulated as follows.
dc(m

h
i) = x(i, k) · qmh

i
/c(vk) (1)

We use x(i, k) to indicate whether microservice mh
i is

deployed on edge server vk. If mh
i is deployed on vk, then

x(i, k) = 1; otherwise, x(i, k) = 0. Here, qmh
i

represents
the processing workload required by mh

i , and c(vk) denotes
the computing capability of edge server vk. When inter-
dependent microservices are deployed on different servers,
the data transfer between them incurs communication time.
Here, we use dl(e

h
mi→mj

) to represent the transferring time
of two dependent microservices, where mh

i is the predeces-
sor of mh

j . The communication time is given by:

dl(e
h
mi→mj

) = y(i, j) · rhmi→mj
/b(vk,vq

) (2)

We use y(i, j) to indicate whether microservices mh
i and

mh
j are deployed on the same edge server. When two

dependent microservices are deployed on different edge
servers, data needs to be transmitted through links of
communication, and y(i, j) = 1. On the contrary, if two
dependent microservices are deployed on the same edge
server, y(i, j) = 0, which means that server-to-server data
transfers are seamless and result in dl(e

h
mi→mj

) = 0. And
the rhmi→mj

is data flow size between microservices mh
i and

mh
j , b(vk,vq) is communication capability of link l(vk,vq).

3.3 Problem Formulation

In this paper, we focus on finding an efficient strategy that
minimizes the makespan of services in set S under the
constraint, which is determined by the part with the longest
completion time. We use f(mh

j) to denote the completion
time of microservice mh

j , which has a predecessor mh
i , i.e.,

mh
i → mh

j . It depends on the completion time f(mh
i) of the

predecessor mh
i , the computation time dc(m

h
j) of mh

j , and
the communication time dl(e

h
mi→mj

) for data transferred
from predecessor mh

i to mh
j . However, it is worth noting

that there may be multiple predecessor microservices in
a service with complex dependencies. Thus, the value of
f(mh

j) is determined by the path of precedence with the
maximum completion time. It is calculated as:
f(mh

j) = max∀i,j{f(mh
i) + dc(m

h
j) + dl(e

h
mi→mj

)}. (3)
Here, we define Th as the makespan of service Sh, which
depends on the maximum completion time of all microser-
vices in Sh, where

Th = max∀j,mh
j ∈Sh

{f(mh
j)}, (4)

TABLE 1
Summary of Symbols in the System Model

Symbol Definition
S Set of services, where S = {Sh}.
Sh The h-th service, where Sh = {Mh, Eh}.
Mh Set of microservices of Sh, where Mh = {mh

i }.
Eh Set of directed links between microservices of Sh,

i.e., Eh = {ehmi→mj
}.

G Topology of the edge network, where G = {V, L}.
V Set of edge servers, where V = {vk}.
L Set of links between edge servers, L = {l(vk,vq)}.
P Set of simple paths in graph G, where P = {pk}.
wpi Weight of path pi.
qmh

i
Required processing capability for microservices
mh

i , measured in gflops.
rhmi→mj

Data flow size between microservices mh
i and mh

j ,
measured in GB.

b(vk,vq) Communication capability of link l(vk,vq), mea-
sured in GB/s.

c(vk) Computing capability of edge server vk .
ϕ(vk)

Storage capability of edge server vk .
dc(mh

i) Processing time of mh
i on an edge server.

dl(e
h
mi→mj

) Transmission latency between mh
i and mh

j .
f(mh

i) Completion time of microservice mh
i .

x(i, k) Boolean variable indicating whether mh
i deploys

on edge server vk .
y(i, j) Boolean variable indicating whether mh

i and mh
j

with dependency are co-located.

and the makespan of services in set S depends on the
maximum completion time of all services Sh, which is
given by

T = maxSh∈S{Th}. (5)

Therefore, the problem formulation is shown as follows:

P1 : minimize T (6)

s.t.
∑|V |

k=1
x(i, k) = 1, ∀i (7)∑|Mh|

i=1
x(i, k) ≤ ϕ(vk), ∀k (8)

b(vk,vq) ≤ τ (9)

x(i, k) ∈ {0, 1}, y(i, j) ∈ {0, 1}, ∀i,∀j, ∀k. (10)

P1 is the objective function that minimizes the makespan
of services, and equations (6) to (10) are the constraints.
Equation (7) signifies that each microservice can only be
allocated to a single edge server. Equation (8) states that
the number of microservices processed on an edge server
cannot exceed its storage capacity. Equation (9) represents
the constraint imposed by the communication bandwidth,
where τ is the threshold determined by the microservices
and servers. The proof of the bound is provided in Lemma
1 in the appendix. Equation (10) specifies the decision of
microservice mh

i that whether deployed on edge server vk,
where x(i, k) ∈ {0, 1}, and the status that whether mh

i and
mh

j are co-located on edge server vk, where y(i, j) ∈ {0, 1}.
To address the intricacies of microservice deployment

in multi-access edge computing, we define the Optimal Mi-
croservice Deployment with Dependencies (OMDD) prob-
lem as follows.
Definition 1 (Optimal Microservice Deployment with De-

pendencies (OMDD) problem). Given the distribution
of microservice S and the edge network G, the OMDD
problem comprises how to find a strategy for microser-
vices in S to minimize P1 under the constraints (7)-(10).

The OMDD problem is NP-hard, as demonstrated in the
detailed proof provided in the appendix.

5

4 ALGORITHM DESIGN

4.1 Enhanced Graph Construction

This subsection addresses the simultaneous deployment
requests of multiple services. A novel enhanced graph con-
struction method is introduced to calculate the makespan,
as specified in equation (5), facilitating parallel deployment
across the service set S. The enhanced graph, denoted as Î,
incorporates a virtual source ms and a virtual destination
md, effectively interlinking all services involved. This con-
figuration serves to streamline the deployment process by
simplifying the connection of service components within
the network.We suppose that the required processing ca-
pacities of ms and md are all 0, where qms

= 0 and qmd
= 0.

To be precise, we construct Hh = {mh
ω|mh

ω∈Mh
} as the set of

starting nodes in service Sh, and H = {Hh} represents the
set of starting nodes of all services. Then we add directed
edges ems→mh

ω
which connect the virtual source ms and

all starting nodes in H of all services ∀Sh ∈ S. Then
we construct Dh = {mh

ϖ|mh
ϖ∈Mh

} as the set of ending
nodes in service Sh, and D = {Dh} represents the set
of ending nodes of all services. We add directed edges
emh

ϖ→md
connecting all ending nodes mϖ in D to the

virtual destination md. We then give values to the directed
edges which represent the required data flow size, where
rmx→mh

ω
= 0 and rmh

ϖ→md
= 0. Since the newly added

nodes and edges do not alter service dependencies or affect
the completion times of microservices, the makespan of the
enhanced graph Î is equivalent to the set of services S.

4.2 Scenario 1: OMDD with no storage constraint

This study initially examines a scenario designed to min-
imize P1 under conditions where storage constraints are
absent. This corresponds to relaxing the conditions on ϕ(vk),
as defined in equation (8), such that ϕvk ≥

∑|S|
h=1 |Mh| for

each server k and for all services h. This scenario is par-
ticularly relevant in environments where edge servers pos-
sess ample storage capabilities but face limitations due to
restricted network bandwidth, potentially due to network
congestion or inadequate infrastructure. Consequently, the
optimization challenge shifts to balancing computational
and communication resources effectively, which is formu-
lated as follows.

P2 : minimize T (11)
s.t.(7), (9)− (10) (12)∑n

i=1
x(i, k) ≤ ϕ(vk), ϕvk ≥

∑|S|

h=1
|Mh|, ∀k (13)

Based on the interaction, we propose a greedy-based solu-
tion of Algorithm 1, which has been proven to be optimal
in Theorem 1. We use the enhanced graph Î, and the edge
network G as the input. The output is the deployment strat-
egy X of microservices and the makespan T. First, for each
server in the set V , we calculate the sum of ϕvk in lines 1
to 2. Then we calculate the total number of microservices in
lines 3 to 4. In line 5, we determine whether the total storage
resources sumϕ can accommodate all microservices summ.
If the edge network G can accommodate all microservices,
where sumϕ ≥ summ, we sort V in descending order by
the computing capacity c(vk) of the server to find the server
with the highest computing capacity in line 6. In lines 7 to
10, we then begin with the provision of the microservices.

Algorithm 1 OMDD with unlimited-storage (OMDD-US)

Require: Î, G.
Ensure: X, T.

1: for vk ← 1 to |V | do
2: sumϕ ← sumϕ + ϕvk ;
3: for mi ← 1 to Î do
4: summ ← summ + 1;
5: if sumϕ ≥ summ then
6: V ← Update with order by vk = argmax{c(vk)};
7: for each mi in Î do
8: Place microservice mi on edge server v0.
9: Update the deployment list X.

10: T← T + qmi/c(v1)

11: Return X, T.

For each mi in Î, we deploy the mi in line 8 to the server v0.
We then update the deployment list X and calculate the T
in lines 9 to 10. Finally, we return the deployment strategy
X of microservices and the makespan T in line 11.

Theorem 1. OMDD-US is an optimal solution for P2.

Proof: We prove this theorem by contradiction. We assume
that the completion time for placing microservices sepa-
rately denoted as Ts is lower than that of merging them
as a whole Tt, i.e., Ts < Tt. Suppose there are two edge
servers v1 and v2, where c(v1) ≥ c(v2). We first consider the
simplest case of a chain-like microservice graph with only
two microservices mx and my . When microservices are
deployed separately, mx is located on edge server v1, and
my is located on edge server v2. Given this, the completion
time Ts for separate deployment is: Ts = qmx

/c(v1) +
qmy

/c(v2)+rmx→my
/bv1,v2 . Then, we consider the case con-

sisting of placing all microservices on the same edge server
v1, which has Tt = qmx

/c(v1)+qmy
/c(v1). Since we suppose

c(v1) ≥ c(v2), it follows that qmy
/c(v2) ≥ qmy

/c(v1). We
calculate the difference between Ts and Tt, where Ts−Tt =
(qmy

/c(v2) − qmy
/c(v1))) + rmx→my

/bv1,v2 . Due to the fact
that rmx→my

/bv1,v2 ≥ 0, we have Ts−Tt ≥ 0, i.e., Ts ≥ Tt,
which contradicts our assumption. Then, we consider a
more realistic case of a DAG-based microservice graph with
only complex dependencies. We assume that there exists
a path mx → my → mz with the maximum required
processing capability of services S, and the makespan
Tt = qmx

/c(v1)+qmy
/c(v1)+qmz

/c(v1) for the case that plac-
ing all microservices on the same edge server v1. Assume
that these microservices are deployed separately, where mx

is deployed on the server v1, and my and mz are deployed
on the server v2. The completion time Ts will be Ts =
qmx

/c(v1) + qmy
/c(v2) + qmy

/c(v2) + rmx→my
/bv1,v2 . Ad-

ditionally, we calculate the difference between Ts and Tt,
where Ts−Tt = ((qmy

+ qmz
)/c(v2)− (qmy

+ qmz
)/c(v1))+

rmx→my
/bv1,v2

. Since we suppose c(v1) ≥ c(v2), it follows
that (qmy

+ qmz
)/c(v2) ≥ (qmy

+ qmz
)/c(v1). Furthermore,

due to the fact that rmx→my
/bv1,v2 ≥ 0, we are able to

deduce that Ts − Tt ≥ 0, i.e., Ts ≥ Tt, which contradicts
our assumption. Therefore, we can obtain that OMDD-US
can minimize P1 under the constraints (7), (9)-(11). ■

6

Algorithm 2 OMDD with unlimited-bandwidth (OMDD-
UB)

Require: Î, G.
Ensure: X, T.

1: Same as Algorithm 1 in lines 1-4;
2: if sumϕ ≥ summ then
3: V ← Update with order by vk = argmax{c(vk)};
4: Î← Update with order by Î = argmax{qmi};
5: for each mi in Î do
6: for vk ∈ V do
7: if ϕvk > 0 then
8: Place mi on edge server vk;
9: ϕvk = ϕvk − 1;

10: Update the deployment list X;
11: T← T + qmi

/c(vi);
12: else
13: Update V = V/vk and go back to line 5;
14: Return X, T

4.3 Scenario 2: OMDD with no communication con-
straint

This subsection explores a scenario aimed at minimizing
P1, characterized by the absence of bandwidth constraints
and the removal of equation (9), stipulating b(vk,vq) ≥ τ .
This setup typifies environments where bandwidth is plen-
tiful while storage resources are constrained, often due to
financial limitations or spatial restrictions. Such conditions
prevail in edge computing contexts where rapid network
connections are ubiquitous, but storage capacities remain
limited. This scenario is delineated as follows.

P3 : minimize T (14)
s.t.(7)− (8), (10) (15)
b(vk,vq) ≥ τ. (16)

Thus, the initial optimization problem has changed to be-
come how to balance the computing and storage resources.
On the basis of the interaction, we propose a novel method
of Algorithm 2, which we prove to be optimal. We use the
enhanced graph Î, and the edge cloud environment G as the
input. The output is the microservices deployment strat-
egy X and the makespan T. First, we determine whether
the total storage of all edge servers can accommodate all
microservices in the enhanced graph Î in the same way
as Algirhtm 1 in lines 1 to 4. If G can accommodate all
microservices, where sumϕ ≥ summ, we sort servers in
descending order of computing capability c(vk) in line 3,
and sort microservices in descending order of required
computing capability qmi

in line 4. Then, we deploy the
microservices sequentially in lines 5 to 13. For each vk in
the sorted V , we start the deployment by checking whether
vk has available storage resources in line 7. If the current
remaining resources ϕvk > 0, we place mh

i on the server vk
in line 8 and update ϕvk . We then update the deployment
list X and calculate the makespan T in lines 10 to 11. If
vk has no further storage resources, we update set V by
removing vk, i.e., V = {V/vk}, and then we go back to line
5. Finally, line 14 returns the deployment strategy X and the
makespan T.

Theorem 2. OMDD-UB is an optimal solution to P1 under
the constraints (7)-(8), (10).

Proof: This theorem is demonstrated through a proof by
contradiction. Consider the hypothesis that deploying mi-
croservices with more substantial computational demands
on a server with lower computational capacity results in a
shorter completion time than deploying them on a server
with greater computational capacity. Let us denote the
makespan on the lower-capacity server as T′ and on the
higher-capacity server as T′′, with the assumption T′ < T′′.
Suppose there are two edge servers v1 and v2, where
c(v1) < c(v2). We consider the case of service with two
microservices mx and my , where qmy

>qmx
. When placing a

microservice with higher required computational resources
on a server with lower computing capability, mx is located
on edge server v1, and my on edge server v2.

The completion time T′ for separate deployment
is T′ = qmx

/c(v1) + qmy
/c(v2) + rmx→my

/bv1,v2 . Since
the bandwidth is unlimited, the communication time
can be neglected. Therefore, T′ = qmx

/c(v1)+qmy
/c(v2).

Then consider the case where microservices with
higher required computational capacity are placed
on a server with higher computing capacity, which
has T′′ = qmx

/c(v2) + qmy
/c(v1). We calculate the

difference between T′ and T′′, where T′ − T′′ =
(qmx

/c(v1)) + (qmy
/c(v2)) − (qmx

/c(v2)) − (qmy
/c(v1)) =

(c(v2)qmx
+ c(v1)qmy

− c(v1)qmx
− c(v2)qmy

)c(v1)c(v2) =
(c(v2) − c(v1))(qmx

− qmy
)/c(v1)c(v2). Since we suppose

c(v2) > c(v1) and qmx
> qmy

, we have T′−T′′ > 0, i.e.,
T′ > T′′, which contradicts our assumption. Therefore, we
obtain that OMDD-UB minimizes P1 under the constraints
(7)-(8), (10). ■

4.4 Scenario 3: OMDD with constraints (7)-(10)
In this subsection, we investigate a more complicated sce-
nario with all resource constraints on storage, computation,
and communication, representing OMDD with constraints
(7)-(10). Each of these physical resource constraints could
potentially serve as a bottleneck for microservices with
dependencies in the extended graph Î. In order to solve the
problem, we present a preliminary method based on em-
bedding the main path and borrowing ideas from the crit-
ical path approach to optimize the makespan by balancing
multiple resource constraints in microservice provisioning.
However, the completion time of each microservice varies
depending on the deployment strategy, so it is impossible
to obtain the critical path directly without determining
the locations. In order to reduce the complexity of the
problem, we introduce a novel definition of the main path
for microservices as follows.
Definition 2 (main path). The main path pi refers to the

path with the maximum weight argmax{w(pi)} of Î.

Here, we use P = {pi} to denote the set of all simple
paths of Î, and we use pi to denote a simple path con-
sisting of a series of microservices denoted as S(pi) =
{m1,m2, . . . ,mn}. We treat the computation demand qmi

of each microservice as the node weight and the data flow
size rmi→mj

between microservices as the edge weight.
Thus, for any path pi, the weight w(pi) is calculated as:

w(pi) =
∑n

i=1
qmi +

∑n−1

i=1
rmi→mi+1 , mi ∈ S(pi). (17)

We prove that the main path is equal to the critical path if
the computational capacities of the servers are equal and
the bandwidths between the servers are equal.

7

Theorem 3. The main path will become the criti-
cal path when server computation capacities and
inter-server bandwidths are equal, where {cvi =
b(vk,vq)|∀vi∈V,∀l(vk,vq)∈L}.

Proof: We prove this theorem by contradiction. First, we
assume the existence of a path pi composed of a se-
ries of microservices denoted as {m1,m2, . . . ,mn}. The
total weight of microservices in pi is given by w(pi) =∑n

i=1 q(mi) +
∑n−1

i=1 rmi→mi+1
. Then, we suppose there

exists another path pa with additional microservices, com-
posed of {ma,mb, . . . ,mm}. The total weight of microser-
vices in pa is w(pa) =

∑m
j=a q(mj) +

∑m−1
j=1 rmj→mj+1

,
with w(pa) < w(pi). We assuming pa is the critical path,
i.e. t(pa) > t(pi). Due to limited storage resources, we
assume that microservices on path pi cannot be placed
on the same edge server. As servers have equal computa-
tion capacity and inter-server bandwidth, we have t(pi) =∑n

i=1 q(mi)/c(vk) +
∑n−1

i=1 rmi→mi1
/b(vk,vq) and t(pa) =∑m

j=a q(mj)/c(vk) +
∑m−1

j=1 rmj→mj+1
/b(vk,vq). Simplifying,

t(pa)−t(pi) =
∑n

i=1 q(mi)/c(vk)+
∑n−1

i=1 rmi→mi+1
/b(vk,vq)−∑m

j=a q(mj)/c(vk)−
∑m−1

j=1 rmj→mj+1/b(vk,vq). Since we sup-
pose c(vk) = b(vk,vq), it follows that t(pa) − t(pi) = w(pa) −
w(pi) < 0. So, we have t(pa) − t(pi) < 0, i.e., t(pa) < t(pi),
which contradicts our assumption. Therefore, the main
path will become the critical path when server computation
capacities and inter-server bandwidths are equal. ■

Theorem 4 brings us to the conclusion that the main
path occasionally becomes the bottleneck of the overall
makespan, so it then also becomes the critical path. So if the
critical path cannot be found because the recently arrived
microservices have not been deployed, we can reduce the
overall makespan by searching for the main path. We
use t(pi) to represent the completion time of path pi. The
formula to calculate t(pi) is as follows:

t(pi) = dc(1) +
∑n

j=2
(dc(j) + dl(j − 1, j)) . (18)

The makespan T can be transformed into the maximum
value of all path completion times t(pi), where

T = max {fi(j)} ≡ max
(
t(pi)

)
. (19)

On the basis of this, we propose a preliminary deployment
strategy consisting of a main path embedding method in
Algorithm 3. We use the enhanced graph Î and the edge
network G as the input. The output is the preliminary
microservices deployment strategy X0 and the makespan
T0. First, we determine whether the total storage of all edge
servers can accommodate all microservices in an enhanced
graph Î in the same way as Algorithm 1 does in lines 1 to
4.In order to optimize both computation and transferring
time, we propose a new definition of the preferred server
as follows.
Definition 3 (preferred server). Let v◦ indicate the preferred

server of V , where v◦ = maxξ(vk){vk|vk∈V }. Here, ξ(vk)
is the priority value of vk with the sum of the computing
capacity and the maximum bandwidth connected in G.

Here, we define function ξ(vk) to calculate the priority
value in order to find the preferred server in lines 3 to 4,
aiming to obtain a server with better processing capacity
and bandwidth, and jointly optimize the processing time
and transferring time. For each vk in set V , we calculate
the sum of computing capability c(vk) and the maximum
bandwidth connected by vk. We choose the server with the

Algorithm 3 OMDD based on Main Path Embedding
(OMDD-MPE)

Require: Î, G.
Ensure: X0, T0.

1: Same as Algorithm 1 in lines 1-4;
2: if sumϕ ≥ summ then
3: for vk ← 1 to |V | do
4: ξ(vk) = c(vk) +max{b(vk,vq)};
5: Choose the preferred server v◦;
6: Construct set P by depth-first search;
7: for pi in P do
8: Find the main path pi by Equation (11);
9: if ϕv◦ > |pi| then

10: Place pi on v◦.
11: else
12: Construct cpi with |ϕv◦ | microservices;
13: Place cpi on v◦;
14: Update pi = pi − cpi and go back to line 9;
15: Update the deployment list X0;
16: Update tpi

by equation (12);
17: Update T0 by equation (13);
18: Return X0, T0;

Algorithm 4 OMDD based on Improved Simulated Anneal-
ing (OMDD-ISA)

Require: Î, G, X0, T0.
Ensure: X, T.

1: Initialize X← X0, T← T0, r, t, k ▷ r controls
the speed of cooling, t is the temperature of the system,
k is the number of iterations.

2: for i← 1 to k do
3: Exchange the deployment positions of microservices

in X and generate an updating deployment X̂;
4: Calculate makespan T̂ of X̂.
5: if T̂ < T then
6: X← X̂;
7: else
8: Calculate ρ = e(T−T̂)/t;
9: if ε < ρ then

10: X← X̂;
11: t← t× r;
12: Return X, T

largest ξ(vk) value as a preferred server in line 5. We use the
depth-first search to find all simple paths of set P = {pi}
in line 6. Then, we deploy the microservices in lines 7 to
17. Lines 7 to 8 use equation (11) to calculate the weight
of each path, and then find the main path pi. Then, we
need to determine whether the v◦ storage is sufficient to
accommodate all the microservices of pi, where v◦ ≤ pi.
We place all microservices on the preferred server when
the v◦ storage is sufficient in line 10. Otherwise, we divide
the path based on the maximum cut cpi

in line 12 which is
defined as follows.
Definition 4 (maximum cut). Let cpi indicate the maximum

cut of path pi in Î which constructs by |ϕv◦ | microser-
vices with the largest weights combination.

Here, |ϕv◦ | represents the server storage of the preferred
server v◦. Then, we deploy the maximum cut cpi

on v◦ in

8

Algorithm 5 Updating based on Simulated Annealing with
Critical Path (U-SAC)

Require: Sr , X, Î.
Ensure: XU , TU .

1: Service Sr requests resources release;
2: Release the resources occupied by Sr ;
3: Update enhanced graph Î;
4: Calculate critical path p′i with the maximum compila-

tion time argmax{t(pi)} of Î.
5: Record servers with resource changes by constructing

set Vu = {v̂k|{ϕ(v̂k) ̸=ϕ(vk)}};
6: Record servers of critical path by constructing set Vo =
{ṽk|mh

i ∈p′
i
};

7: if any v̂k ∈ Vu for ṽk ∈ Vo then
8: Same as Algorithm 4 in lines 1-11;
9: else

10: Not updated;
11: Return XU , T.

line 13. We update path pi with pi = pi − cpi to continue
to complete the deployment of the remaining services and
go back to line 9. After that, we update the deployment
list X0, and we use equations (12) and (13) to calculate the
makespan T0 in lines 15 to 17. Finally, the microservices
deployment strategy X0 and the makespan T0 are returned
in line 18. Although we proved in Theorem 4 that the main
path can become the critical path under certain conditions,
the actual scenario might be more complicated. This means
that the main path is not always identical to the critical
path. Therefore, Algorithm 3 may not always provide the
optimal solution and may lead to suboptimal deployment
results in certain cases. To further improve the quality of
our solution, we have therefore taken additional measures
to optimize the performance of Algorithm 3.

We utilize the preliminary deployment solution X0 ob-
tained from Algorithm 3 as a starting point and introduce
a novel strategy based on the improved simulated anneal-
ing algorithm for iterative optimization. However, due to
the limitation of server storage resources, the traditional
simulated annealing algorithm might exceed the capacity
constraint when searching for neighbor solutions. To ad-
dress this issue, we have refined the algorithm. The specific
steps are presented in Algorithm 4. In line 1, we take
the preliminary deployment strategy X0 and makespan
T0 obtained in Algorithm 3 as the required values of
Algorithm 4, and we set the values of hyperparameters.
Lines 3 to 4 randomly select the deployment positions of
two microservices from the current solution for exchanging
and generating an updating solution. We then determine
an updated makespan T̂. Lines 5 to 10 determine whether
the new solution is accepted based on the Metropolis
criterion. If the makespan of the updating strategy T̂ is
lower than the preliminary makespan T, we accept the
updating strategy X̂ in line 6. Otherwise, we calculate the
probability ρ of the new strategy in line 8. After that, we
use ε to represent the judging condition for accepting ρ
which is a random probability between 0 and 1, where
ε ∈ [0, 1]. The new approach is acceptable if the probability
ρ is above ε. Otherwise, reserve strategy X. After that,
we cool down the t at a rate r range from [0.9,1) in line
11. This optimization strategy enables us to progressively

modify the distribution of microservices depending on
the preliminary solution to better respond to the practical
environment and resource constraints. Through multiple
iterations, the simulated annealing algorithm progressively
converges towards improved solutions, thereby enhancing
the quality and effectiveness of the deployment strategy.
Theorem 4. The complexity of Algorithm 4 is O(κ × |V | ·
|V −1|!), where κ is the maximum number of iterations.

Proof: In Algorithm 4, each iteration involves a series of
operations, including generating new solutions, calculating
the objective function value, and deciding whether to ac-
cept the new solution. The time complexity of these oper-
ations is fixed and denoted as O(1). In addition, since the
number of maximum iterations κ determines the runtime
of the algorithm, the overall time complexity of the algo-
rithm is directly proportional to the maximum number of
iterations κ, i.e., O(κ). During each iteration, the algorithm
performs calculations to determine whether new solutions
are accepted. We need to traverse all possible paths and
perform calculations from the source to the destination.
Since the number of paths depends on the topology of the
graph, in the worst case it can reach the factorial size of the
number of nodes, which is denoted by O(|V | · |V − 1|!).
Thus, the time complexity of Algorithm 4 can be expressed
as O(κ × |V | · |V − 1|!), where κ is the maximum number
of iterations, and |V | is the number of edge servers in the
enhanced graph G. ■

4.5 Scenario 4: OMDD with Updating
In this subsection, we explore a more realistic and con-
tinuous scenario where all services are deployed under
constraints (7)-(10) and dynamically release resources after
their operation cycle is completed. Our focus is on real-
time resource updating during the dynamic operation of
microservices to ensure that resources are optimally uti-
lized and available for new services when needed. There-
fore, we design a flexible update algorithm that responds
promptly to release requests and adjusts the locations of
microservices to reduce the overall makespan by migrating
and merging microservices.

The specific steps are outlined in Algorithm 5. We use
the enhanced graph Î, the edge environment G, and the
service Sr that released resources as the input. The output
is the updating strategy Xu and the makespan T of the
microservices. When the service Sr requests the release of
resources, we first release the resources occupied by Sr and
then update the extended graph Î in lines 1 to 3. After that,
we record servers with resource changes in set Vu in line 4.
For the updated Î, we calculate the critical path p′i with the
maximum compilation time by equation (18), and record
set of servers Vo of p′i. If a server in Vu is also in Vo, which
means that there are excess resources on the server where
the critical path is located, we can reduce the makespan by
merging the critical paths. The proof is shown in Theorem
6. Then we use the improved algorithm for simulated
annealing, which corresponds to lines 1 to 11 of Algorithm
4. Specifically, we randomly select two microservices on
servers in the set Vo and perform a location exchange for an
updating solution. On that basis, we determine an updating
makespan T̂ and determine whether the new solution is
accepted based on the Metropolis criterion in line 8. If there
is no change in resources on the server where the critical

9

121.4 121.45 121.5 121.55
Latitude

31.15

31.2

31.25

Lo
ng

itu
de

(a) Server Distribution.

121.44 121.46 121.48 121.5 121.52
Latitude

31.22

31.23

31.24

31.25

Lo
ng

itu
de

(b) Server locations (# of 10).

121.44 121.48 121.52
Latitude

31.21

31.22

31.23

31.24Lo
ng

itu
de

(c) Server locations (# of 20).

121.4 121.45 121.5 121.55
Latitude

31.16

31.18

31.2

31.22

31.24

Lo
ng

itu
de

(d) Server locations (# of 50).
Fig. 2. Locations of edge servers.

path resides, microservice updates will not be carried out.
Finally, the deployment strategy X and the makespan T are
returned in line 11.
Theorem 5. Updating the locations of microservices that

construct the critical path is a necessary and sufficient
condition for reducing makespan T.

Proof: First, we prove that updating the locations of mi-
croservices that construct the critical path is a necessary
condition for reducing the makespan. We use proof by
contradiction to demonstrate this. We assume that updating
the locations of microservices constructs a simple path that
non-critical path will reduce the makespan. We define the
updating makespan as T′, i.e., T′ < T. We assume that there
are two paths, p1 and p2, in the augmented graph Î, where
t(p1) > t(p2). According to equation (19), T = max(t(pi)), so
T = t(p1). Suppose we update the locations of microservices
on path p2, resulting in an updating time t′(p2)

where
t′(p2)

< t(p2). Since t(p2) < t(p1), we have t′(p2)
< t(p1).

Due to equation (19), T′ = max(t(pi)), and the updating
makespan is T′ = t(p1). T′ = T, which contradicts our
assumption. Therefore, we can conclude that updating the
locations of microservices that construct the critical path is
a necessary condition for reducing the makespan.

Then, we prove that updating the locations of mi-
croservices that construct the critical path is a sufficient
condition, i.e., when the makespan is reduced, the locations
of microservices on the critical path have been reduced.
We use proof by contradiction to demonstrate this. We
assume that when the makespan is reduced, the reduced
path is a simple path which is the non-critical path. Suppose
there are multiple paths in the enhanced graph Î before
updating, where p1 has the longest finish time. According
to equation (19), T = max(t(pi)), so T = t(p1). After
updating T′ < T, T′ = max(t(pi)), the reduced critical path
in the graph Î is t(pi) and t(pi) < t(p1). However, since
T = max(t(pi)) and t(pi) < t(p1), the reduced makespan
should be T′ = t(p1) = T. This is a contradiction, so our
assumption is false. Therefore, we can conclude that updat-
ing the locations of microservices that construct the critical
path is a sufficient condition for reducing the makespan. ■

5 EXPERIMENT

5.1 Basic Setting
We conducted extensive experiments to validate the ef-
fectiveness of our algorithms under various scenarios. All
experiments were conducted using Python 3.7 on Windows
10 with an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz,
NVIDIA RTX5000 GPU, and 32GB memory. We utilized a
dataset obtained from China Telecom Shanghai Company
[21], containing information about 3,233 base station lo-
cations and their corresponding user connections in June
2014. We randomly selected subsets of locations contain-
ing 10, 20, and 50 base stations, and each base station

was equipped with a server, forming set V , as shown in
Figure 2. Subsequently, we generate varying numbers of
services under each scale, with each service abstracted as a
DAG composed of 4-5 microservices. The total numbers of
microservices for three different scale scenarios are 25, 50,
and 120, respectively. We configure the required processing
capacity and internal data flow for these microservices.

5.1.1 Scenarios
We made modifications to the edge network in accordance
with various scenarios.

• Scenario 1: We set computing capacities of edge
servers to range from [5, 20] gflops, and storage
resources range from [120, 150] units. We set the
inter-server bandwidth to range from [20, 80] GB/s.
Additionally, the required computing capacities of
microservices range from [1, 3] gflops, and the inter-
microservice data flow sizes range from [1, 80] GB/s.

• Scenario 2: We set computing capacities of servers
to range from [5, 20] gflops, and storage resources
range from [1, 5] units. We set the inter-server band-
width to range from [100, 500] GB/s. The setting of
required computing capacities for microservices is
the same as scenario 1, and the inter-microservice
data flow sizes are changed to [0.1, 0.2] GB/s.

• Scenario 3 and Scenario 4: We set storage resources
to range from [1, 5] units. The computing capacities,
inter-server bandwidth ranges, required comput-
ing capacities, and inter-microservice data flow size
ranges are similar to scenario 1.

5.1.2 Baselines
We introduce four baselines to compare with our proposed
OMDD-ISA (ISA) algorithm for scenarios 1, 2, and 3.

• Simulated Annealing-only (SA): Traditional an-
nealing algorithm, generating random initial values.

• Q-Learning (QL): States are composed of the alloca-
tion status of a series of services. Each service can be
assigned to different servers or remain unassigned.
In the initial state, all services are in the cloud and
the action space contains

∑|S|
h=1 |Mh| · |V | actions.

Deployment decisions are guided by the Q table,
with positive rewards for successful deployments
and negative rewards for unsuccessful ones.

• BFS: Prioritizes microservices with minimal compu-
tational demands and no dependencies, deploying
them sequentially to optimize resource utilization
on available servers [10].

• DFS: Targets microservices within the largest data
streams for early deployment, arranging them to
minimize data transmission times between interde-
pendent services [10].

For scenario 4, we introduced six baselines in compari-
son with our proposed U-SAC algorithm:

10

1.4

4.25

1.4 1.4

0.82 0.82 0.875 0.875

0

1

2

3

4

5

(a) Scenario 1.

1.08

1.41
1.57

1.86

1.16

0.8

1.32

1.01

0

0.5

1

1.5

2

2.5

(b) Scenario 2.

4.13

7.72
8.24

10.28

5.28

9.42

5.07
3.99

0

2

4

6

8

10

12

(c) Scenario 3.
Fig. 3. Makespan comparison with 10 servers and 25 microservices.

2.18

9.26

2.18 2.18
1.26 1.26 1.33 1.33

0

2

4

6

8

10

12

(a) Scenario 1.

1.65
1.77

1.87 1.94
1.77

1.53

1.87

1.63

0

0.5

1

1.5

2

2.5

(b) Scenario 2.

10.18

11.97 12.18

8.24

11.49

9.66

5.77 5.21

0

3

6

9

12

15

(c) Scenario 3.
Fig. 4. Makespan comparison with 20 servers and 50 microservices.

3.9

26.34

2.39 2.41 1.4 1.4 1.86 1.86

0

5

10

15

20

25

30

35

(a) Scenario 1.

2.9

3.5

2.92

3.57
3.35

2.35

3.53

2.88

0

1

2

3

4

5

(b) Scenario 2.

14.72
15.86

19.44

10.71

14.93 14.63

10.03 9.31

0

5

10

15

20

25

(c) Scenario 3.
Fig. 5. Makespan comparison with 50 servers and 120 microservices.

TABLE 2
The total makespan under real-world microservice benchmark.

methods SA QL BFS DFS OMDD-US OMDD-UB OMDD-MPE OMDD-ISA

makespans Lakeside 5.14 6.65 5.94 7.9 6.84 7.3 5.45 4.01
FTGO 4.73 5.64 8.52 7.84 5.3 5.84 5.59 3.77

• ISA: No updates are performed after the release of
services (MODD-ISA).

• Updating-Simulated Annealing with random path
(U-SAR): Randomly select a non-critical path for
a microservices route, determine the location of
the server along that path, and check for resource
changes. If any of these servers experience resource
changes, apply simulated annealing to resolve.

• Updating-by Capacity (U-CA): Identify servers
with resource changes after service release, select the
server with the most remaining storage resources as
the target server, and merge the paths of microser-
vices on the target server.

• Updating-by Compute Power (U-CP): Identify
servers with resource changes after the service re-
lease, select the server with the strongest computing
capacity as the target server, and merge the paths of
the microservices on the target server.

• Updating-by Capacity with critical path (U-CAC):
Locate the critical path, select the server with the
maximum remaining storage resources among those
on the critical path as the target server, and merge
the critical path.

• Updating-by Compute Power with critical path (U-
CPC): Identify the critical path, select the server with
the highest computing capability among those on
the critical path as the target server, and merge the
critical path.

5.2 Experiment Results

5.2.1 Microservice Deployment

We evaluated multiple algorithms across different exper-
imental scenarios to compare their performance on mi-
croservice applications of varying scales and scenarios. As
shown in Figures 3, 4, and 5, the x-axis lists all evaluated al-
gorithms, while the y-axis represents the overall makespan,
defined as the end-to-end execution time required to com-
plete all microservices in the workflow. Based on these
results, we draw the following conclusions:

(i). The OMDD-US method consistently achieves the
lowest makespan in Scenario 1. As shown in Figures 3(a),
4(a), and 5(a), the makespan for the OMDD-US method is
0.82 seconds with 10 servers and 25 microservices, 1.26 sec-
onds for 20 servers and 50 microservices, and 1.4 seconds
for 50 servers and 120 microservices. This performance
surpasses all other methods. Notably, the makespan of UB
is consistently the same as that of the US because both
methods use a greedy approach to place microservices
on high-capacity servers. The difference is that UB sorts
microservices based on qmh

i
before deployment, making

it more complex in large-scale scenarios. We can see in
Figures 3(a) and 4(a) that the makespan for DFS and
BFS are consistent, while in Figure 5(a), there are slight
differences. This is because when the server capacity is
large enough, the order of microservice deployment can
be ignored, but when the server capacity is insufficient to
accommodate all microservices, the deployment order will
affect the completion time. Meanwhile, MPE and ISA per-

11
TABLE 3

The released services are the ones that are on the critical path.
methods ISA U-SAC U-SAR U-CA U-CP U-CAC U-CAP

makespans
service (# of servers)

S1(10) 3.61 3.26 3.61 3.51 3.51 6.11 3.61
S3(20) 4.81 4.81 4.81 4.81 4.81 4.81 4.81

form relatively modestly in Scenario 1, with slightly higher
makespans compared to other methods. This is because
MPE takes into account both computation and commu-
nication resources. In Scenario 1, where storage resources
are unrestricted, placing all services on a single server
does not generate communication time, making commu-
nication resources less critical. The uniform performance
of MPE and ISA arises from the swap-based optimization
strategy under capacity constraints when using simulated
annealing, which is not applicable in the capacity-unlimited
Scenario 1. Furthermore, the SA method exhibits relatively
poorer performance in Scenario 1 due to its tendency to
get trapped in a local optimum when storage resources are
unlimited and the problem scale is substantial. Finally, the
QL method shows relatively higher makespans across all
problem scales in Scenario 1. This is attributed to the com-
plexity of its state space, resulting in longer computation
times and the inability to find the optimal solution within
limited iterations.

(ii). The OMDD-UB method consistently minimizes the
makespan in Scenario 2 as depicted in Figures 3(b), 4(b),
and 5(b). For example, with 10 servers and 25 microser-
vices, the makespan of UB is 0.8. Similarly, with 20 servers
and 50 microservices, the makespan is 1.53, and with
50 servers and 120 microservices, the makespan is 2.35,
surpassing other methods in each instance. The OMDD-US
method performs relatively well in Scenario 2, though with
a slightly higher makespan than UB. This is because the
US method does not fully utilize the computing capacity
of the edge servers. Some microservices that require fewer
computing resources are deployed on powerful servers,
resulting in wasted resources and a longer runtime. MPE
performs less favorably in Scenario 2 as it considers both
computation and communication resources, where commu-
nication resources are not the primary bottleneck. DFS and
BFS perform poorly overall in Scenario 2, but BFS consis-
tently performs better than DFS. This is because DFS uses
the method described in [10] to place the paths with the
larger edge weights first. In scenario 2, however, the band-
width of the link is large enough to neglect the transmission
time, so that the data transfer between the microservices
does not have to be taken into account. Therefore, BFS
consistently outperforms DFS in this situation. The SA
and QL methods demonstrate moderate performance in
Scenario 2, with relatively high makespans across different
problem scales, possibly due to their stochastic nature
causing significant fluctuations. In addition, QL performs
well in small-scale problems but exhibits higher makespans
in larger-scale problems, likely due to the complexity of its
state space, resulting in extended computation times and
an inability to find global optima within a limited number
of iterations. In Scenario 2, ISA runs effectively with a lower
makespan. The main reason it falls short of UB is due to its
stochastic character, which can make it impossible to find
the optimal solutions.

(iii). The ISA method consistently minimizes the
makespan in Scenario 3 as shown in Figures 3(c), 4(c),
and 5(c). Specifically, with 10 servers and 25 microservices,

ISA achieves a makespan of 3.99. With 20 servers and 50
microservices, the makespan is 5.21, and with 50 servers
and 120 microservices, it is 9.31, outperforming all other
methods. Moreover, the performance difference increases
by 20%-40% as the problem gets larger. When we compare
the performance of the algorithms in different scenarios, we
also notice the following trends: the difference between SA
and ISA is not significant in small scales, primarily because
of fewer deployment strategies available at smaller scales,
leading to reasonable solutions for both methods. In larger-
scale environments, the performance of the SA algorithm
decreases, possibly due to the randomness of the initial
solution leading to a local optimum. Additionally, the QL
solution shows fluctuations that worsen with increasing
size. This is attributed to the vast state space in QL in large-
scale environments, making it difficult to find global optima
within limited iterations. It is worth noting that the per-
formance of the DFS algorithm improves with increasing
scale, which can be attributed to the algorithm’s design.
Similar to the ISA, DFS considers deploying according to
the weight of the paths, indirectly validating the rationale
of the main path. To summarize, the experimental results
effectively demonstrate the effectiveness and superiority of
the proposed algorithms in various scenarios.

(iv). OMDD-ISA achieves the lowest total makespan
on both real-world microservice benchmarks. As shown
in Table 2, on the Lakeside dataset, OMDD-ISA attains a
makespan of 4.01, markedly outperforming other OMDD
variants such as OMDD-MPE (5.45), OMDD-UB (7.30),
and OMDD-US (6.84), as well as classical heuristics. On
the FTGO dataset, OMDD-ISA again yields the best result
with a makespan of 3.77, whereas the closest competing
method, OMDD-MPE, produces a makespan of 5.59, and
the remaining methods exhibit even higher values, demon-
strating its superior scheduling effectiveness under practi-
cal microservice dependencies. The results indicate that the
adaptive strategy incorporated in OMDD-ISA effectively
reduces the end-to-end execution time across diverse real-
world microservice architectures, and consistently yields
more efficient microservice deployment decisions than both
classical heuristics (SA, BFS, DFS) and other OMDD vari-
ants. Then, we compare performance across both datasets,
several trends emerge. SA and BFS provide relatively com-
petitive results on Lakeside, but their makespans increase
significantly on FTGO, suggesting limited adaptability to
complex or highly heterogeneous service dependencies.
In addition, QL and DFS show inconsistent performance,
with DFS exhibiting substantial degradation on FTGO,
indicating sensitivity to the structural characteristics of the
microservice graph. Among the OMDD variants, OMDD-
MPE maintains more stable performance but still falls short
of OMDD-ISA. Therefore, the real-world benchmark eval-
uations further validate the effectiveness of OMDD-ISA in
practical microservice deployment.

5.2.2 Microservice Updating
We evaluated different algorithms at various scales to
compare their performance in microservices updates when

12

3.99
3.51 3.61 3.61 3.61 3.61

3.99

0

1

2

3

4

5

m
a

k
e

s
p

a
n

(a) Service 2.

3.99
3.51

3.7
3.51 3.51 3.61

3.99

0

1

2

3

4

5

m
a

k
e

s
p

a
n

(b) Service 3.

3.99
3.67

3.99 3.99 3.99 3.99 3.99

0

1

2

3

4

5

m
a

k
e

s
p

a
n

(c) Service 4.

3.99 3.99 3.99 3.99 3.99 3.99 3.99

0

1

2

3

4

5

m
a

k
e

s
p

a
n

(d) Service 5.
Fig. 6. Services updating under the 25 microservices (10 servers).

5.21
4.97

5.21 5.21 5.21
4.97

5.21

0

1

2

3

4

5

6

m
a

k
e

s
p

a
n

(a) Service 1.

5.21

4.58
5.08

4.81 4.81 4.81
5.21

0

1

2

3

4

5

6

m
a

k
e

s
p

a
n

(b) Service 2.

5.21 5.21 5.21

5.92 5.92

5.21 5.21

0

1

2

3

4

5

6

7

m
a

k
e

s
p

a
n

(c) Service 4.

5.21
4.88

5.2 5.21 5.21 5.08 5.08

0

1

2

3

4

5

6

m
a

k
e

s
p

a
n

(d) Service 5.
Fig. 7. Services updating under the 50 microservices (20 servers).

TABLE 4
Comparison of services updating under 120 microservices (50 servers).

Service ICA U-SAC U-SAR U-CA U-CP U-CAC U-CAP Std.Deviation
S1 9.31 8.09 9.31 8.65 8.65 8.65 9.31 0.4712
S2 9.31 9.31 9.31 9.31 9.31 10.03 9.31 0.2721
S3 9.31 9.31 9.31 9.31 9.31 10.03 9.31 0.2721
S4 9.31 9.31 9.31 9.31 9.31 10.03 9.31 0.2721
S5 9.31 9.31 9.31 9.31 9.31 10.03 9.31 0.2721
S6 9.31 9.31 9.31 9.31 9.31 10.03 9.31 0.2721
S7 9.31 9.31 9.31 9.31 9.31 10.03 9.31 0.2721
S8 9.31 8.27 9.31 9.31 9.31 9.31 9.31 0.3931
S9 9.31 8.83 9.31 9.31 9.31 9.44 9.7 0.2579
S10 8.65 7.68 8.65 7.7 7.7 7.7 8.65 0.5105
Avg 9.244 8.873 9.244 9.083 9.083 9.528 9.283 −

releasing different services. The experimental results are
shown in Figures 5 and 6, and Table 3. We conclude
that: (i). The merging critical paths approach in U-SCA
effectively reduces the makespan. As shown in Table 3, U-
SCA consistently exhibits the shortest makespan, even with
the lowest average makespan in various cases (highlighted
and underlined in the table). For instance, in Figure 5, at
the scale of 10 servers and 25 microservices, after releasing
service 1, U-SCA achieves a makespan of 3.26, outperform-
ing all other methods. Despite all methods utilizing critical
path merging, the results obtained by the U-CAC algorithm
are relatively less favorable. For example, in Figure 7 (a), U-
CAC exhibits poor performance with a makespan as high
as 6.11. This is because, although the servers identified by
U-CAC include the critical path and have surplus resources
for updating microservices, the complexity arising from the
trade-off between computation time and communication
time in the deployment of dependent microservices results
in an update strategy that may not be suitable for the
current scenario, thus increasing the makespan. In this
example, the makespan of U-SAR and U-CAP remains
unchanged compared to the scenario where merging is not
performed after release (ISA). This is because of the stochas-
tic nature of U-SAR, where the randomly chosen server
along the path selected may not release any resources,
preventing microservices updates and resulting in an un-
changed makespan. Additionally, U-CAP has limitations. It
aims to find the critical path for merging but if the server
with the highest computing capability on the critical path
has no resource release, it may lead to a situation where
merging does not occur, causing the makespan to remain
unchanged. U-CA and U-CP exhibit relatively good per-

formance when releasing different services. Both of these
algorithms first identify servers with resource changes,
ensuring the microservices update process. Therefore, they
only show the results where the makespan is reduced or
remains unchanged due to not updating the location of
microservices on the critical path. While not as effective
as U-SCA, these two algorithms still perform well.

(ii). For the same scale, the released services have an
impact on the makespan after updates. As shown in Table 3
and Table 4, when the released services include the critical
path, such as S1, S3, and S10, the makespan will decrease
even without any updating. This is because the makespan
is updated to the completion time of the original subcritical
path when the services on the critical path are released
according to equation (19). However, it is worth noting that
when some services are released, any updating strategy has
no effect on the makespan which is shown in Figures 6 (d)
and S1 in Table 4. This is because there is no correlation
between the released services and the microservices on
the critical path, which means that the position of the
non-released microservices on the critical path remains un-
changed. Therefore, the makespan still occupies the longest
critical path temporarily and remains unchanged. When
the released services include microservices on the critical
path, the makespan will be updated, as shown in Table 3
with S10. Hence, different released services lead to different
updated makespans.

(iii). The number of servers and microservices also
affects the results. As shown in Figure 5, we assigned a
random capacity in the range [1, 5] for each server, resulting
in a scenario with a total capacity of 29, closest to the 25 mi-
croservices. However, the makespan in Figure 5 increased

13

by 16.6%. In Figure 6, we similarly assigned a random
capacity in the range [1, 5] for each server, resulting in a
dataset with a total capacity of 69, with 50 microservices
and more available capacity. In this case, U-SAC increased
the makespan by 12%. As shown in Table 2, the generated
dataset had a total capacity of 127, with 120 microservices,
resulting in a 13% increase in makespan under this scenario.
We found that when the constraints were very stringent,
specifically when the number of microservices and the
server capacity were closer, U-SAC demonstrated better
performance. This is because, in our improved simulated
annealing algorithm, as the available capacity increases,
more iterations are needed to find a satisfactory solution.
When the number of iterations remains constant, the ability
to reduce makespan is more pronounced in situations with
smaller remaining capacity and more extreme conditions.

6 CONCLUSION

This paper focuses on addressing the microservices de-
ployment and updating with dependencies in a resource-
constrained mobile edge computing environment. We ex-
plore how to optimize the deployment of microservices
in various application scenarios, and how to update the
locations of microservices to reduce makespan. We initially
consider two straightforward scenarios: one with unlimited
storage resources under the bandwidth constraint, and
the other with unlimited bandwidth resources under the
storage constraint. For each of these two scenarios, we
introduce a novel enhanced graph construction method
and design two optimal solutions. For Scenario 3, which
involves complex constraints on server capacity, computa-
tional capability, and communication resources, we present
an optimization method based on main path partitioning
and the simulated annealing algorithm. By flexibly explor-
ing the solution space, we incrementally optimize microser-
vices deployment to adapt to real-world environments and
resource constraints. Next, we discuss a more complex and
realistic scenario where resources are dynamically released
after completing tasks. We propose an update algorithm
based on the critical path that adjusts the locations of mi-
croservices to reduce the overall makespan. Across multiple
experimental results, our approach significantly improves
microservices deployment efficiency and overall perfor-
mance compared to baseline strategies.

In this work, we focus on the issue of microservice de-
ployment and updating with dependencies under resource
constraints. However, the current method does not consider
user distribution. In our future work, QoS information
will be further optimized based on the distribution and
trajectory of mobile users.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (62502017, 62072016), the
Beijing Natural Science Foundation (4244074), and the
Hainan Province Science and Technology Special Fund
(ZDYF2024GXJS034).

REFERENCES

[1] Lv W, Wang Q, Yang P, et al. Microservice deployment in edge
computing based on deep Q learning[J]. IEEE Transactions on
Parallel and Distributed Systems, 2022, 33(11): 2968-2978.

[2] Duc T L, Leiva R G, Casari P, et al. Machine learning methods
for reliable resource provisioning in edge-cloud computing: A
survey[J]. ACM Computing Surveys (CSUR), 2019, 52(5): 1-39.

[3] Cerny T, Abdelfattah A S, Bushong V, et al. Microservice ar-
chitecture reconstruction and visualization techniques: A re-
view[C]//2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE). IEEE, 2022: 39-48.

[4] Oakes E, Yang L, Zhou D, et al. SOCK: Rapid task provisioning
with Serverless-Optimized containers[C]//2018 USENIX annual
technical conference (USENIX ATC 18). 2018: 57-70.

[5] Ding Z, Wang S, Jiang C. Kubernetes-oriented microservice place-
ment with dynamic resource allocation[J]. IEEE Transactions on
Cloud Computing, 2022.

[6] Tang B, Guo F, Cao B, et al. Cost-aware Deployment of Microser-
vices for IoT Applications in Mobile Edge Computing Environ-
ment[J]. IEEE Transactions on Network and Service Management,
2022.

[7] Wang S, Guo Y, Zhang N, et al. Delay-aware microservice co-
ordination in mobile edge computing: A reinforcement learning
approach[J]. IEEE Transactions on Mobile Computing, 2019, 20(3):
939-951.

[8] Samanta, A., Nguyen, T. G., Ha, T., Mumtaz, S. (2022). Dis-
tributed resource distribution and offloading for resource-agnostic
microservices in industrial iot. IEEE Transactions on Vehicular
Technology, 72(1), 1184-1195.

[9] Gu, L., Chen, Z., Xu, H., Zeng, D., Li, B., Jin, H. (2022, May). Layer-
aware collaborative microservice deployment toward maximal
edge throughput. In IEEE INFOCOM 2022-IEEE Conference on
Computer Communications (pp. 71-79). IEEE.

[10] He, X., Tu, Z., Wagner, M., Xu, X., Wang, Z. (2022). Online
deployment algorithms for microservice systems with complex
dependencies. IEEE Transactions on Cloud Computing.

[11] Adeppady, M., Giaccone, P., Karl, H., Chiasserini, C. F. (2023).
Reducing microservices interference and deployment time in
resource-constrained cloud systems. IEEE Transactions on Net-
work and Service Management.

[12] Kumar, M., Samriya, J. K., Dubey, K., Gill, S. S. (2023). QoS-
aware resource scheduling using whale optimization algorithm for
microservice applications. Software: Practice and Experience.

[13] Zhao H, Deng S, Liu Z, et al. Distributed redundant placement for
microservice-based applications at the edge[J]. IEEE Transactions
on Services Computing, 2020, 15(3): 1732-1745.

[14] Niu Y, Liu F, Li Z. Load balancing across microservices[C]//IEEE
INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018: 198-206.

[15] Deng S, Zhao H, Xiang Z, et al. Dependent function embedding
for distributed serverless edge computing[J]. IEEE Transactions on
Parallel and Distributed Systems, 2021, 33(10): 2346-2357.

[16] Pallewatta S, Kostakos V, Buyya R. QoS-aware placement of
microservices-based IoT applications in Fog computing environ-
ments[J]. Future Generation Computer Systems, 2022, 131: 121-136.

[17] Hu, Y., Wang, H., Wang, L., Hu, M., Peng, K., Veeravalli, B.
(2023). Joint Deployment and Request Routing for Microservice
Call Graphs in Data Centers. IEEE Transactions on Parallel and
Distributed Systems.

[18] Guo, F., Tang, B., Tang, M. (2022). Joint optimization of delay
and cost for microservice composition in mobile edge computing.
World Wide Web, 25(5), 2019-2047.

[19] Liao H, Li X, Guo D, et al. Dependency-aware application assign-
ing and scheduling in edge computing[J]. IEEE Internet of Things
Journal, 2021, 9(6): 4451-4463.

[20] Guo Y, Wang S, Zhou A, et al. User allocation-aware edge cloud
placement in mobile edge computing[J]. Software: Practice and
Experience, 2020, 50(5): 489-502.

[21] Li Y, Zhou A, Ma X, et al. Profit-aware edge server placement[J].
IEEE Internet of Things Journal, 2021, 9(1): 55-67.

[22] Pinedo M L. Scheduling[M]. New York: Springer, 2012.
[23] Lv W, Yang P, Zheng T, et al. Graph Reinforcement Learning-

based Dependency-Aware Microservice Deployment in Edge
Computing[J]. IEEE Internet of Things Journal, 2023.

[24] Wang, C., Jia, B., Yu, H., Li, X., Wang, X., Taleb, T. (2022,
December). Deep Reinforcement Learning for Dependency-aware
Microservice Deployment in Edge Computing. In GLOBECOM
2022-2022 IEEE Global Communications Conference (pp. 5141-
5146). IEEE.

[25] Qi, J., Zhang, H., Li, X., Ji, H., Shao, X. (2023, March). Edge-edge
Collaboration Based Micro-service Deployment in Edge Comput-
ing Networks. In 2023 IEEE Wireless Communications and Net-
working Conference (WCNC) (pp. 1-6). IEEE.

14

[26] Li, X., Zhou, J., Wei, X., Li, D., Qian, Z., Wu, J., Qin, X. and Lu,
S., 2023. Topology-Aware Scheduling Framework for Microservice
Applications in Cloud. IEEE Transactions on Parallel and Dis-
tributed Systems, 34(5), pp.1635-1649.

[27] Singh, Vindeep, and Sateesh K. Peddoju. ”Container-based mi-
croservice architecture for cloud applications.” 2017 International
Conference on Computing, Communication and Automation (IC-
CCA). IEEE, 2017.

[28] Zambianco, Marco, Silvio Cretti, and Domenico Siracusa. ”Cost
Minimization in Multi-cloud Systems with Runtime Microservice
Re-orchestration.” 2024 27th Conference on Innovation in Clouds,
Internet and Networks (ICIN). IEEE, 2024.

[29] Sampaio, Adalberto R., et al. ”Improving microservice-based ap-
plications with runtime placement adaptation.” Journal of Internet
Services and Applications 10 (2019): 1-30.

[30] Hossen, Md Rajib, Mohammad A. Islam, and Kishwar Ahmed.
”Practical efficient microservice autoscaling with QoS assur-
ance.” Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing. 2022.

Shuaibing Lu is currently a lecturer at the Col-
lege of Computer Science at Beijing University
of Technology. She received her PhD in Com-
puter Science and Technology from Jilin Uni-
versity, Changchun in 2019. She was supported
by the China Scholarship Council as a visiting
scholar under the supervision of Prof. Jie Wu
in the Department of Computer and Information
Science at Temple University (2016-2018). She
is a member of IEEE. Her current research fo-
cuses on distributed computing, cloud comput-

ing, and edge computing.

Ran Yan received her B.Sc. in Network En-
gineering at Beijing Information Science and
Technology University. Currently, she is working
toward her M.Sc. degree in the College of Com-
puter Science at Beijing University of Technol-
ogy. Her research interests include cloud com-
puting and edge computing.

Powered by TCPDF (www.tcpdf.org)

Jie Wu is the Director of the Center for Net-
worked Computing and Laura H. Carnell profes-
sor at Temple University. He also serves as the
Director of International Affairs at the College
of Science and Technology. He served as Chair
of the Department of Computer and Informa-
tion Sciences from the summer of 2009 to the
summer of 2016 and Associate Vice Provost
for International Affairs from the fall of 2015 to
the summer of 2017. Prior to joining Temple
University, he was a program director at the

National Science Foundation and was a distinguished professor at
Florida Atlantic University. His current research interests include mobile
computing and wireless networks, routing protocols, cloud and green
computing, network trust and security, and social network applications.
Dr. Wu regularly publishes in scholarly journals, conference proceed-
ings, and books. He serves on several editorial boards, including IEEE
Transactions on Service Computing and the Journal of Parallel and
Distributed Computing. Dr. Wu was general co-chair for IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014,
ICPP 2016, and IEEE CNS 2016, as well as program co-chair for IEEE
INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair
of IEEE Technical Committee on Distributed Processing (TCDP). Dr.
Wu is a CCF Distinguished Speaker and a Fellow of IEEE. He is
the recipient of the 2011 China Computer Federation (CCF) Overseas
Outstanding Achievement Award. Currently, he is working as a Scientist
at China Telecom.

Zhi Cai is an associate professor in the Col-
lege of Computer Science, Beijing University of
Technology, China. He obtained his M.Sc. in
2007 from the School of Computer Science at
the University of Manchester and Ph.D. in 2011
from the Department of Computing and Math-
ematics of the Manchester Metropolitan Univer-
sity, U.K. His research interests include Informa-
tion Retrieval, Ranking in Relational Databases,
Keyword Search, and Intelligent Transportation
Systems.

Jackson Yang is currently an undergraduate
student in the School of Software at Beijing
Jiaotong University, specializing in software en-
gineering. Jackson has participated in several
projects focusing on the development of VR
systems for psychological treatments and edge
computing and cloud computing.

Shuyang Zhou is currently a junior at Beijing
Jiaotong University, majoring in Software Engi-
neering. His current research interests are fo-
cused on edge computing and cloud computing.

Haiming Liu is currently a lecturer in the School
of Software Engineering at Beijing Jiaotong Uni-
versity. He received his Ph.D. degree in Com-
puter Science and Technology (Bioinformatics)
from Jilin University, Changchun, in 2019. He is
a member of the Chinese Association for Arti-
ficial Intelligence (CAAI). His current research
focuses on edge computing, data mining, and
bioinformatics.

Juan Fang Juan Fang, received her M.S.
degree from Jilin University of Technology,
Changchun, China in 1997, and her Ph.D. de-
gree from the College of Computer Science,
Beijing University of Technology, Beijing, China,
in 2005. In 1997, she joined the College of
Computer Science, Beijing University of Tech-
nology. From 2015, she has been a professor at
Beijing University of Technology. Her research
interests include high performance computing,
edge computing and big data technology.

